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Abstract
A non-Hermitian deformation of the one-dimensional transverse Ising model
is shown to have the property of quasi-hermiticity. The transverse Ising chain
is obtained from the starting non-Hermitian Hamiltonian through a similarity
transformation. Consequently, both the models have identical eigen spectra,
although the eigenfunctions are different. The metric in the Hilbert space,
which makes the non-Hermitian model unitary and ensures the completeness
of states, has been constructed explicitly. Although the longitudinal correlation
functions are identical for both the non-Hermitian and the Hermitian Ising
models, the difference shows up in the transverse correlation functions, which
have been calculated explicitly and are not always real. A proper set of
Hermitian spin operators in the Hilbert space of the non-Hermitian Hamiltonian
has been identified, in terms of which all the correlation functions of the
non-Hermitian Hamiltonian become real and identical to that of the standard
transverse Ising model. Comments on the quantum phase transitions in the
non-Hermitian model have been made.

PACS numbers: 02.30.Ik, 75.10.Pq, 03.65.Fd

The discovery of a class of non-Hermitian Hamiltonians admitting entirely real spectra has
generated a renewed interest in the study of quantum physics [1–10]. The reality of the
entire spectra is related to an underlying unbroken combined parity (P) and time-reversal
(T ) symmetry [1] and/or quasi-hermiticity [2, 3] of the non-Hermitian Hamiltonian. Apart
from a very few known examples [6–9], one of the major technical difficulties in the study
of PT symmetric and/or quasi-Hermitian quantum physics is to find the appropriate basis
with respect to which the non-Hermitian Hamiltonian becomes Hermitian. The description of
a non-Hermitian Hamiltonian admitting entirely real spectra is incomplete in the absence of
such a basis, since neither the unitarity nor the completeness of states is guaranteed. It may
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be noted here that the completeness of states is an essential criterion to claim a Hamiltonian
to be exactly solvable.

The purpose of this paper is to introduce and study an exactly solvable non-Hermitian
Hamiltonian of the type of the transverse Ising model that admits entirely real spectra. In
particular, we consider a non-Hermitian Hamiltonian and map it to the transverse Ising model
through a similarity transformation. Consequently, both the models have identical spectra.
We find the metric in the Hilbert space of the non-Hermitian Hamiltonian that is required
to make the theory unitary and to ensure the completeness of states. We show that the
n-point longitudinal correlation function of the non-Hermitian Hamiltonian is identical to that
of the standard Hermitian transverse Ising model. We also calculate the two-point transverse
correlation functions of the non-Hermitian Hamiltonian exactly that reduces to that of the
transverse Ising model in the Hermitian limit. However, the transverse correlation functions
are not always real. We identify a proper set of Hermitian spin operators in the Hilbert space
of the non-Hermitian Hamiltonian in terms of which all the correlation functions of the non-
Hermitian Hamiltonian become real and identical to that of the standard transverse Ising model.

There are many physical applications of the transverse Ising chain such as quantum phase
transitions and finite-temperature crossovers [11–13]. The transverse Ising model has also
been studied [14] extensively from the viewpoint of quantum entanglement and its connection
with quantum phase transition. We may thus expect that the non-Hermitian transverse Ising
Hamiltonian gives an explicit and concrete example of a non-Hermitian exactly solvable many-
body system and should be useful for studying some interesting properties of non-Hermitian
quantum systems explicitly.

Non-Hermitian quantum many-body systems are closely related to several important
topics in other subjects. For instance, non-Hermitian quantum spin chains correspond to
two-dimensional classical systems with positive Boltzmann weights. In exactly solvable
models, the non-Hermitian XY and XXZ spin chain Hamiltonians with Dzyaloshinsky–
Moriya interactions commute with the transfer matrix of the six-vertex model in the presence
of an electric field [15], and the integrable chiral Potts model in the most general case
leads to a non-Hermitian quantum Hamiltonian (see for review [16, 17]). Moreover, non-
Hermitian asymmetric XXZ spin chains related to the one-dimensional diffusion models have
been studied extensively in nonequilibrium statistical mechanics [18]. The inherent pseudo-
hermiticity of these spin models has been discovered very recently [19] which allows a unitary
description with a modified inner product in the Hilbert space. Further, a non-Hermitian
quantum Ising spin chain in one dimension [20] is known to be related to the celebrated
Yang–Lee model [21] that aptly describes ordinary second-order phase transitions. The non-
hermiticity of the spin chain arises due to the inclusion of an external complex magnetic
field and an analysis based on minimal conformal field theories is available [20, 22]. Very
recently, pseudo-hermiticity of the non-Hermitian Ising chain of [20] has been studied for a
finite number of sites in [23] and any result for an arbitrary number of sites is still lacking.
The non-Hermitian quantum Ising chain that is considered in this paper is different from that
of [20] and an exact description of an arbitrary number of sites is possible.

Let us now consider the transverse Ising Hamiltonian in the following modified form,

H = −
N∑

i=1

(
JSz

i S
z
i+1 + ε1S

+
i + ε2S

−
i

)
(1)

where Sz
i , S

±
i = (

Sx
i ± iSy

i

)
are the spin variables. The spin variables can be represented in

terms of the Pauli matrices σ± = 1
2 (σ x ± iσy) , σ z and the 2 × 2 identity matrix I as

Sz
i = I ⊗ · · · ⊗ I ⊗ 1

2σ z ⊗ I ⊗ · · · ⊗ I
(2)

S±
i = I ⊗ · · · ⊗ I ⊗ σ± ⊗ I ⊗ · · · ⊗ I,
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where σ± and σ z are in the ith position. The parameter J is real, however, ε1,2 are complex.
Thus, the Hamiltonian is non-Hermitian for ε1 �= ε∗

2 , where the ∗ denotes the complex
conjugation. The Hamiltonian H and its adjoint H † are related to each other through the
transformation ε1 ↔ ε∗

2 . The standard transverse Ising model is recovered when both ε1 and
ε2 are real and ε1 = ε2. Even for the Hermitian case, i.e. ε1 = ε∗

2 , H can be mapped to the
standard transverse Ising model through a unitary transformation. However, for general ε1

and ε2, H cannot be mapped to a Hermitian Hamiltonian by using a unitary transformation.
The Hamiltonian H can be mapped to a Hermitian Hamiltonian through a similarity

transformation. To do so, let us introduce the operator ρ and its inverse ρ−1 in the following
way:

ρi = γ − 1
2 S+

i S−
i + γ

1
2 S−

i S+
i ,

ρ−1
i = γ

1
2 S+

i S−
i + γ − 1

2 S−
i S+

i , (3)

ρ =
N∏

i=1

ρi, ρ−1 =
N∏

i=1

ρ−1
i ,

where γ =
√

|ε1|
|ε2| . The ordering of ρi’s is not required in the definition of the positive-definite

operators ρ and ρ−1, since [ρi, ρj ] = 0 for i �= j . Using the following identities,

ρ Sz
i ρ−1 = Sz

i ,
(4)

ρ S±
i ρ−1 = γ ∓1 S±

i ,

one can easily check that

h = ρHρ−1

= −
N∑

i=1

JSz
i S

z
i+1

− β

N∑
i=1

(ei arg(ε1) S+
i + ei arg(ε2) S−

i ). (5)

The parameter β appearing in h is defined as β ≡ √| ε1 || ε2 |. The Hamiltonian h is Hermitian
when the following condition holds true:

arg(ε1) + arg(ε2) = 2kπ, k = 0, 1, 2, . . . . (6)

Thus, equation (6) is the condition for H to be quasi-Hermitian, i.e. related to the Hermitian h
through the similarity transformation. A counter-clockwise rotation on the Sx–Sy-plane around
the Sz-axis by an angle ξ ≡ arg(ε1) = − arg(ε2), followed by a clockwise rotation by an angle
π
2 around the Sy-axis for each spin transform h into the standard form of the transverse Ising
model. To this end, we introduce an operator U as

U =
N∏

i=1

ei π
2 S

y

i

N∏
j=1

e−iξSz
j , (7)

which transforms S
x,y,z

i in the following way:

USz
i U

−1 = −Sx
i ,

US
y

i U−1 = S
y

i cos ξ − Sz
i sin ξ, (8)

USx
i U−1 = Sz

i cos ξ + S
y

i sin ξ.

3
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Using the above identities, h can be transformed to H,

H = UhU−1

= −
N∑

i=1

(
JSx

i Sx
i+1 + βSz

i

)
(9)

which is the standard form of the transverse Ising model. The entire energy spectra of H are
real and identical to that of H, since a similarity transformation cannot change the eigenvalues.
However, as we will see below, the difference between H and the transverse Ising Model (i.e.
H with real ε1 = ε2) shows up in the eigenstates and the transverse correlation functions.

The transverse Ising modelH is exactly solvable and the different correlation functions can
be calculated explicitly [24–27]. Using the Jordan–Wigner transformation, the Hamiltonian H
can be transformed to a fermionic Hamiltonian which is quadratic in the fermionic annihilation
and creation operators. The resulting fermionic Hamiltonian can be further diagonalized in
terms of a new set of canonical Fermi operators [24]. It is worth mentioning here that the direct
application of the Jordan–Wigner transformation to H produces a fermionic Hamiltonian with
non-local, non-Hermitian interaction. However, the operators ρ and its inverse ρ−1 defined
appropriately in terms of fermionic annihilation and creation operators transform H to the
fermionic version of H that is local and Hermitian.

If |ψn〉 constitutes a complete set of orthonormal eigenstates of the Hermitian Hamiltonian
H with energy eigenvalue En, then

|φn〉 = (U ρ)−1 |ψn〉, |χn〉 = (ρ U−1)|ψn〉 (10)

are the eigenstates of H and its adjoint H †, respectively. It may be noted here that both H and
H † share the same energy eigenvalue En with H. However, neither |φn〉 nor |χn〉 constitute
a complete set of orthonormal basis vectors. Consequently, with the standard norm in the
Hilbert space, the time evolution of H(or H †) is not unitary, although the entire eigen spectra
are real. As is evident from equations (5)–(9), H is a quasi-Hermitian operator. Thus, the
Hilbert space of H admits a bi-orthogonal structure,

〈χn|φm〉 = δnm,
∑

n

|χn〉〈φn| = 1. (11)

The completeness of states can be accomplished if the inner-product in the Hilbert space is
modified as [2]

〈〈u, v〉〉η+ := 〈u, η+v〉, η+ := ρ2. (12)

With this new inner-product in the Hilbert space, the expectation value of an operator Ô can
be calculated as

〈〈Ô〉〉η+ ≡ 〈φn|η+Ô|φn〉 = 〈ψn| (Uρ) Ô (Uρ)−1 |ψn〉. (13)

We will be using the above expression to calculate n-point correlation function of H. The
standard inner product 〈u, v〉 will be used to calculate the correlation function of the Hermitian
Hamiltonian H.

An n-point (n � N ) longitudinal correlation function of H for the mth eigenstate can be
related to the correlation function of the transverse Ising model in the following way:

〈〈
Sz

i1
Sz

i2
· · · Sz

in

〉〉
η+

= (−1)n〈ψm|Sx
i1
Sx

i2
· · · Sx

in
|ψm〉, (14)

where any two of the indices ik are not equal. Identifying Sz
i of H with −Sx

i of H, we observe
that the longitudinal correlation functions for these two systems are identical. However, the
n-point transverse correlation functions of H and H differ from each other. Let us introduce a

4
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complex parameter z ≡ ln γ + iξ, γ > 0 in terms of γ and ξ . We also introduce two operators
Qi1,i2,...,in and Q̃i1,i2,...in as

Qi1i2···in =
n∏

j=1

(
cosh z Sz

ij
− i sinh z S

y

ij

)

(15)

Q̃i1i2···in =
n∏

j=1

(
i sinh z Sz

ij
+ cosh z S

y

ij

)
.

The transverse correlation functions of H and H can now be related as〈〈
Sx

i1
Sx

i2
· · · Sx

in

〉〉
η+

= 〈ψm|Qi1i2···in |ψm〉
(16)〈〈

S
y

i1
S

y

i2
· · · Sy

in

〉〉
η+

= 〈ψm|Q̃i1i2···in |ψm〉.
In general, for γ �= 1, the correlation functions are complex. For example, the one-point
correlation functions in the ground-state |ψ0〉 can be evaluated as〈〈

Sx
i

〉〉
η+

= cosh z Mz
i ,

〈〈
S

y

i

〉〉
η+

= i sinh z Mz
i , (17)

where M
x,y,z

i ≡ 〈ψ0|Sx,y,z

i |ψ0〉 and we have used the result [26] that M
y

i = 0 for arbitrary
λ ≡ J

β
. It may be noted that for γ �= 1, 〈〈Sx

i 〉〉η+ is real only for ξ = nπ ,
〈〈
Sx

i

〉〉
η+

= (−1)n cosh(ln γ )Mz
i , (18)

while
〈〈
S

y

i

〉〉
η+

is real only for ξ = (2n + 1) π
2 ,

〈〈
S

y

i

〉〉
η+

= (−1)n+1 cosh(ln γ )Mz
i , (19)

where n is either zero or a positive integer. It is expected that for H to describe a physical
theory, at least both the magnetization along the X- and Y-directions should be real, which is
not the case for a fixed ξ and γ �= 1. This is certainly an unwanted feature.

The two-point diagonal correlation functions have the following form:〈〈
Sx

i Sx
j

〉〉
η+

= cosh2 z Cz
ij − sinh2 z C

y

ij ,
(20)〈〈

S
y

i S
y

j

〉〉
η+

= − sinh2 z Cz
ij , + cosh2 z C

y

ij ,

where C
x,y,z

ij ≡ 〈ψ0|Sx,y,z

i S
y,z

j |ψ0〉 and we have used the result [26] 〈ψ0|Sz
i S

y

j |ψ0〉 =
〈ψ0|Sy

i Sz
j |ψ0〉 = 0 for arbitrary λ. For γ �= 1, both 〈〈Sx

i Sx
j 〉〉η+ and 〈〈Sy

i S
y

j 〉〉η+ are real
for ξ = nπ

2 . In particular, for ξ = nπ :
〈〈
Sx

i Sx
j

〉〉
η+

= cosh2(ln γ )Cz
ij − sinh2(ln γ )C

y

ij ,
(21)〈〈

S
y

i S
y

j

〉〉
η+

= − sinh2(ln γ )Cz
ij + cosh2(ln γ )C

y

ij ,

and for ξ = (2n + 1) π
2 :

〈〈
Sx

i Sx
j

〉〉
η+

= − sinh2(ln γ )Cz
ij + cosh2(ln γ )C

y

ij ,
(22)〈〈

S
y

i S
y

j

〉〉
η+

= cosh2(ln γ )Cz
ij − sinh2(ln γ )C

y

ij .

The diagonal correlation functions explicitly depend on γ and reproduce the known results in
the Hermitian limit γ = 1.

The off-diagonal two-point correlation functions have the following form:
〈〈
Sx

i S
y

j

〉〉
η+

= i

2
sinh 2z

(
Cz

ij − C
y

ij

)
,

〈〈
Sx

i Sz
j

〉〉
η+

= 0, (23)
〈〈
S

y

i Sz
j

〉〉
η+

= 0,

5
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where we have used the result [26] 〈ψ0|Sx
i S

y

j |ψ0〉 = 0 and 〈ψ0|Sz
i S

x
j |ψ0〉 = 0 for arbitrary

λ. It may be noted that
〈〈
Sx

i S
y

j

〉〉
η+

is complex for γ �= 1 and arbitrary ξ . Both
〈〈
Sx

i Sz
i

〉〉
η+

and〈〈
S

y

i Sz
i

〉〉
η+

vanish for arbitrary λ. Other n-point correlation functions with higher values of n
may be calculated in the same way. Some of them may become complex for γ �= 1.

One of the major criticisms of the above results could be that all the one- and two-point
correlation functions are not real simultaneously for a fixed ξ and γ �= 1. The reason could be
traced to the fact that although Sz

i are Hermitian in the Hilbert space of H that is endowed with
the metric η+, the same is not true for the spin variables Sx

i and S
y

i . As a result, in general,
different correlation functions involving Sx

i and S
y

i are complex.
It is worth mentioning here that a common problem in the study of pseudo-Hermitian

and PT symmetric quantum physics is that although the entire energy eigen values of a
non-Hermitian Hamiltonian may become real with unitary time evolution, expectation values
of other physical quantities of interest may not be real. Thus, a complete description of
non-Hermitian Hamiltonian is not imminent. A common understanding in this regard is that
the metric η+ is not unique and a more general metric in the Hilbert space of H may be found
so that all the correlation functions are real along with the eigenvalues. Since, a generalized
metric that gives a complete description of H is not guaranteed a priori, identification of a
proper set of operators those are Hermitian with respect to η+ may give rise to a complete
description of H. General prescription in this regard is already known [2]. To this end, we
introduce a new set of spin operators,

T x
i := −Sz

i ,

T
y

i := −iSx
i sinh z + S

y

i cosh z, (24)

T z
i := Sx

i cosh z + iSy

i sinh z,

which satisfy the standard SU(2) algebra. It should be noted here that T
x,y

i are not Hermitian
in the sense of Dirac hermiticity, i.e.

〈
u, T

x,y

i v
〉 �= 〈

T
x,y

i u, v
〉
. However, the operators T

x,y,z

i

are Hermitian in the Hilbert space of H with respect to the metric η+. The Hamiltonian H can
be rewritten as

H = −
N∑

i=1

(
JT x

i T x
i+1 + βT z

i

)
. (25)

The Hamiltonian H is Hermitian, i.e. 〈u, η+Hv〉 = 〈Hu, ηv〉. Using the identities,

(Uρ) T
x,y,z

i (Uρ)−1 = S
x,y,z

i , (26)

and equation (13), it is easy to see that the n-point correlation functions of H and H are now
identical,

〈〈
T

p

i1
T

q

i2
· · · T r

in

〉〉
η+

= 〈ψm|Sp

i1
S

q

i2
· · · Sr

i3
|ψm〉, (27)

where the superscripts p, q, r can be identified with x, y, z. This implies that the Hamiltonian
H that is non-Hermitian with respect to the condition of Dirac-hermiticity has in fact a
consistent and complete description in terms of the new spin operators T

x,y,z

i those are
Hermitian in the Hilbert space of H that is endowed with the metric η+. Moreover, energy
eigenvalues and different correlation functions of H and H are identical.

One pertinent question that seems unavoidable at this point is whether the particular choice
of the positive-definite metric η+ has any role in establishing identical n-point correlation
functions for H and H. It seems that the answer is in the negative as long as the proper
identification of the new set of spin operators is made for a given positive-definite metric. In

6
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particular, for a given positive-definite metric η+ := �2, the Hermitian spin operators �
x,y,z

i

should be chosen as

�
x,y,z

i := �−1S
x,y,z

i �, ∀ i, (28)

which would automatically imply identical correlation functions for H andH. This observation
is important, since it gives a metric independent description.

Finally, a few comments are in order:

(i) The transverse-field Ising model is known to possess a global phase flip symmetry. The
same symmetry is present in the pseudo-Hermitian Hamiltonian H also with the phase
flip operator K given by

K :=
N∏

i=1

T z
i . (29)

The operator K acts on S
x,y,z

i in the following way:

KSz
i K

−1 = −Sz
i , KS±

i K−1 = e∓2zS∓
i . (30)

The phase flip symmetry acts quite non-trivially on S
x,y

i .
The Krammers–Wannier duality of the standard transverse-field Ising model can also be
established for H. Defining a set of spin operators which obey SU(2) algebra and are
Hermitian with respect to the modified inner product in the Hilbert space,

τ x
i :=

∏
k�i

T z
k , τ

y

i := −T
y

i T x
i+1

∏
k�i−1

T z
k , τ z

i := T x
i T x

i+1, (31)

the Hamiltonian H can be rewritten as

H = −
N∑

i=1

(
Jτ z

i + βτx
i τ x

i+1

)
. (32)

Based on the standard arguments, λ = 1 is determined as the critical point/line.
(ii) The transverse Ising model undergoes quantum phase transition. Since H is related to H

through the similarity transformation, H also undergoes quantum phase transition. The
quantum critical line of H is determined by λ = 1 and it contains the quantum critical
point of H.
Near the critical line/point of the quantum phase transition, the equal-time correlations
of the order parameter do not change for H and H. Here we recall that the longitudinal
correlation functions are identical for both the non-Hermitian and the Hermitian Ising
models. However, the degree of quantum coherence among spins S

x,y,z

i should be different
for H and H due to the difference in the transverse correlation functions. The description
of H in terms of the spin operators S

x,y,z

i is incomplete and improper, since the correlation
functions are not always real. A consistent and complete description in terms of the spin
operators T

x,y,z

i is possible and both transverse and longitudinal correlations functions
are identical for H and H. Consequently, the order parameter and the degree of quantum
coherence near the critical point/line remain the same for both the Hamiltonians.

(iii) The Hamiltonian H is quasi-Hermitian. A concept related to quasi-hermiticity is pseudo-
hermiticity. One can show that H is pseudo-Hermitian, i.e., H † = θHθ−1, where θ := ρ2.
The operator θ and its inverse are evaluated as given below

θ =
N∏

i=1

θi =
N∏

i=1

(γ −1S+
i S−

i + γ S−
i S+

i ),

(33)

θ−1 =
N∏

i=1

θ−1
i =

N∏
i=1

(γ S+
i S−

i + γ −1S−
i S+

i ).

7
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Note that [θi, θj ] = 0 for i �= j . Hence, the ordering of θis are not required in the
expression above.

(iv) There are many physically motivated generalizations of the transverse Ising model [12, 13]
and are important in the study of phase transitions. A non-Hermitian deformation of such
models can be shown to be quasi-Hermitian. For example, consider the non-Hermitian
Hamiltonian,

H1 = −
N∑

i=1

(
JiS

z
i S

z
i+1 + KiS

z
i S

z
i+k

)

−
N∑

i=1

(ε1,ie
iξi S+

i + ε2,ie
−iξi S−

i ), (34)

where Ji,Ki, ξi, ε1,i , ε2,i are real and k is an integer satisfying 1 < k < N . The
Hamiltonian H1 is Hermitian for ε1,i = ε2,i ,∀ i. Define the similarity operator ρ1 and its
inverse as

ρ1 =
N∏

i=1

(
γ

− 1
2

i S+
i S−

i + γ
1
2

i S−
i S+

i

)
,

(35)

ρ−1
1 =

N∏
i=1

(
γ

1
2

i S+
i S−

i + γ
− 1

2
i S−

i S+
i

)
,

where γi ≡
√

| ε1,i

ε2,i
|. The non-Hermitian H1 can be mapped to a Hermitian H1 through the

similarity transformation,

H1 = ρ1H1ρ
−1
1

= −
N∑

i=1

(
JiS

z
i S

z
i+1 + KiS

z
i S

z
i+k

)

−
N∑

i=1

[βi(e
iξi S+

i + e−iξi S−
i )], (36)

where βi ≡ √| ε1,iε2,i |. Thus, H is quasi-Hermitian.

We have considered a non-Hermitian deformation of the transverse Ising model that is
also quasi-Hermitian. The transverse Ising model has been obtained from the starting non-
Hermitian Hamiltonian through a similarity transformation. Consequently, both the models
have identical eigen spectra, although the eigenfunctions are different. The metric in the
Hilbert space, which makes the non-Hermitian model unitary and ensures a complete set of
states, has been constructed explicitly. Although the longitudinal correlation functions are
identical for both the non-Hermitian and the Hermitian Ising models, the difference shows
up in the transverse correlation functions, which have been calculated explicitly. However,
the transverse correlation functions are not always real. In order to give a complete and
consistent description, we have identified a proper set of Hermitian spin operators in the
Hilbert space of the non-Hermitian Hamiltonian in terms of which all the correlation functions
of the non-Hermitian Hamiltonian become real and identical to that of the standard transverse
Ising model. The non-Hermitian Hamiltonian undergoes quantum phase transitions and it
is expected that around the quantum critical line both the order parameter and the degree
of quantum coherence of spins should be identical to that of the standard transverse Ising
model.
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Schütz G M 2000 Integrable stochastic many-body systems Phase Transition and Critical Phenomena vol 19,

ed ed C Domb and J L Lebowitz (London: Academic)
[19] Ghosh P K 2009 arXiv:0908.321
[20] von Gehlen G 1991 J. Phys. A: Math. Gen. 24 5371

von Gehlen G 1994 Int. J. Mod. Phys. B 8 3507
[21] Yang C N and Lee T D 1952 Phys. Rev. 87 404

Lee T D and Yang C N 1952 Phys. Rev. 87 410
[22] Cardy J L 1985 Phys. Rev. Lett. 54 1354
[23] Castro-Alvaredo O A and Fring A 2009 arXiv:0906.4070

9

http://www.arxiv.org/abs/quant-ph/0501052
http://dx.doi.org/10.1119/1.1574043
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1088/0305-4470/31/14/001
http://www.arxiv.org/abs/0810.5643
http://dx.doi.org/10.1063/1.1418246
http://dx.doi.org/10.1063/1.1461427
http://dx.doi.org/10.1063/1.1489072
http://dx.doi.org/10.1088/0305-4470/37/48/009
http://dx.doi.org/10.1016/S0550-3213(02)00347-4
http://dx.doi.org/10.1016/0003-4916(92)90284-S
http://dx.doi.org/10.1088/0305-4470/34/28/305
http://dx.doi.org/10.1088/1751-8113/40/32/R01
http://dx.doi.org/10.1016/j.physleta.2004.01.020
http://dx.doi.org/10.1063/1.1640796
http://dx.doi.org/10.1088/1751-8113/40/30/F07
http://dx.doi.org/10.1088/1751-8113/40/2/F03
http://dx.doi.org/10.1088/1751-8113/40/34/015
http://dx.doi.org/10.1088/0305-4470/38/33/007
http://dx.doi.org/10.1103/PhysRevE.80.021107
http://dx.doi.org/10.1103/PhysRevE.80.026213
http://www.arxiv.org/abs/0803.4500
http://dx.doi.org/10.1088/1751-8113/40/30/016
http://www.arxiv.org/abs/0904.1513
http://dx.doi.org/10.1103/PhysRevLett.95.245701
http://www.arxiv.org/abs/0904.0115
http://dx.doi.org/10.1103/PhysRevLett.93.250404
http://dx.doi.org/10.1103/PhysRevLett.97.170401
http://www.arxiv.org/abs/cond-mat/0606126
http://dx.doi.org/10.1007/BF02710156
http://dx.doi.org/10.1006/aphy.1994.1026
http://dx.doi.org/10.1088/0305-4470/26/7/011
http://dx.doi.org/10.1088/0305-4470/31/28/019
http://www.arxiv.org/abs/0908.321
http://dx.doi.org/10.1088/0305-4470/24/22/021
http://dx.doi.org/10.1142/S0217979294001494
http://dx.doi.org/10.1103/PhysRevLett.54.1354
http://www.arxiv.org/abs/0906.4070


J. Phys. A: Math. Theor. 42 (2009) 475208 T Deguchi and P K Ghosh

[24] Lieb E, Schultz T and Mattis D 1961 Ann. Phys. 16 407
[25] Pfeuty P 1970 Ann. Phys. 57 79
[26] McCoy B M 1968 Phys. Rev. 173 531

Barouch E and McCoy B M 1971 Phys. Rev. A 3 786
Johnson J D and McCoy B M 1971 Phys. Rev. A 4 2314

[27] Perk J H H and Au-Yang H 2009 J. Stat. Phys. 135 599

10

http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1016/0003-4916(70)90270-8
http://dx.doi.org/10.1103/PhysRev.173.531
http://dx.doi.org/10.1103/PhysRevA.3.786
http://dx.doi.org/10.1103/PhysRevA.4.2314
http://dx.doi.org/10.1007/s10955-009-9758-5

	Acknowledgments
	References

